问题: 集合
若集合A={x|x²+ax+1=0,x∈R},集合B={1,2},且A包含于B,求实数a的取值范围 是A包含于B
解答:
x^2+ax+1≤0
(1)a^2-4<0,即-2<a<2时,x^2+ax+1>0,所以A=空集,A是B的子集
(2)a≤-2或a≥2时,x^2+ax+1=0,x=(-a±√a^2-4)/2,A={x|(-a-√a^2-4)/2≤x≤(-a+√a^2-4)/2},A是B的子集
所以(-a-√a^2-4)/2≥1
(-a+√a^2-4)/2≤2
解得a≥-2
所以a=-2或a≥2
综合(2)a≥-2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。