问题: 设无穷数列{An}前n项和Bn,数列Bn的前n项和为Cn,且满足Bn Cn=n(n∈N)
设无穷数列{An}前n项和Bn,数列Bn的前n项和为Cn,且满足Bn+Cn=n(n∈N)
1求证:数列{1-Bn}是等比数列
2求lim 1/n^2=(C1+C2+...+Cn)
解答:
1.
Bn+Cn=n(n∈N) ...(1) ==> B(n-1) + C(n-1) = n-1 ...(2)
(1)-(2): An + Bn = 1 ...(3) ===> A(n-1) + B(n-1) = 1 ...(4)
(3)-(4): An - A(n-1) + An = 0
==> An/A(n-1) = 1/2
由(3): A1 + B1 = 2*A1 = 1 ==> A1 = 1/2
Bn = 1 - 1/2^n
1 - Bn = 1/2^n
==> 数列{1-Bn}是等比数列
2. 求lim 1/n^2=(C1+C2+...+Cn) ???
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。