首页 > 留学知识库

问题: 设无穷数列{An}前n项和Sn,以致Sn=k*An 1(k≠1),且limSn=1,求实数k的取值范围

解答:

Sn=k*An+ 1,An=Sn-S(n-1)=k*An-k*A(n-1)
1) k=1,A(n-1)=0,Sn=0,和矛盾Sn=k*An+ 1
2)k≠1,An=(k/(k-1))A(n-1)=(k/(k-1))^(n-1)A1=
=-1/(k-1)(k/(k-1))^(n-1)
limSn=1,得limAn=0,|k/(k-1)|<1,
得 k<1/2.