问题: 已知a>b>c>o,求证a^(2a)b^(2b)c^(2c)>a^(b+c)b^(a+c)c^(a+
已知a>b>c>o,求证a^(2a)b^(2b)c^(2c)>a^(b+c)b^(a+c)c^(a+b)
解答:
已知a>b>c>o,求证a^(2a)b^(2b)c^(2c)>a^(b+c)b^(a+c)c^(a+b)
证明:
因为:[a^(2a)*b^(2b)*c^(2c)]/[a^(b+c)*b^(a+c)*c^(a+b)]
=[a^(a+a)*b^(b+b)*c^(c+c)]/[a^(b+c)*b^(a+c)*c^(a+b)]
=a^[(a-b)+(a-c)]*b^[(b-a)+(b-c)]*c^[(c-a)+(c-b)]
=[a^(a-b)*a^(a-c)]*[b^(b-c)/b^(a-b)]*[1/c^(a-c)]*[1/c^(b-c)]
=(a/b)^(a-b)*(b/c)^(b-c)*(a/c)^(a-c)
因为:a>b>c>0,所以:
a/b>1、b/c>1、a/c>1
且,a-b>0、b-c>0、a-c>0
那么,对于指数函数y=a^x,当a>1,且x>0时,有:y>1
所以:(a/b)^(a-b)*(b/c)^(b-c)*(a/c)^(a-c)>1*1*1=1
即:[a^(2a)*b^(2b)*c^(2c)]/[a^(b+c)*b^(a+c)*c^(a+b)]>1
所以:
[a^(2a)*b^(2b)*c^(2c)]>[a^(b+c)*b^(a+c)*c^(a+b)]
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。