首页 > 留学知识库

问题: sinx-siny=-2/3,cosx-cosy=2/3,x,y且都是锐角,则

sinx-siny=-2/3,cosx-cosy=2/3,x,y且都是锐角,则
tan(x-y)=?

解答:

解:
sinx-siny=-2/3 (1)
cosx-cosy=2/3, (2)
各式两边平方后相加, 并注意到 (sinz)^2 +(cosz)^2 =1 , 有
2 -2(cosx *cosy+sinx *siny)= 2*(4/9)
cosx *cosy+sinx *siny = cos(x-y) = 5/9
因为 sinx-siny=-2/3 <0 ,
故 x <y ,
故 tan(x-y) < 0

[tan(x-y)]^2 = 1/[cos(x-y)]^2 -1= 1/[5/9]^2 - 1 =56/25
tan(x-y)= - √(56/25)= -(2/5)*√(14)