问题: 函数性质
已知函数f(x)=asinx﹣bcosx (a,b为常数,a≠0,x∈R),此函数的图像关于x=π/4对称,则函数y=f(3π/4﹣x)的奇偶性和对称点是什么
解答:
已知函数f(x)=asinx﹣bcosx (a,b为常数,a≠0,x∈R),此函数的图像关于x=π/4对称,则函数y=f(3π/4﹣x)的奇偶性和对称点是什么
函数f(x)关于x=π/4对称,则:f[(π/4)+x]=f[(π/4)-x]
令x=(π/4)-t
则:f[(π/4)+(π/4)-t]=f[(π/4)-(π/4)+t]
即:f[(π/2)-t]=f(t)
亦即:f(x)=f[(π/2)-x]
而,f[(π/2)-x]=asin[(π/2)-x]-bcos[(π/2)-x]=acosx-bsinx
所以:asinx-bcosx=-bsinx+acosx
则:(a+b)(sinx-cosx)=0
上式对于任意x均成立,所以:a=-b
那么,f(x)=asinx+acosx=a(sinx+cosx)=√2a*sin[x+(π/4)]
所以:
f[(3π/4)-x]=√2a*sin[(3π/4)-x+(π/4)]
=√2a*sin(π-x)
=√2a*sinx
所以:函数y=f[(3π/4)-x]是奇函数,它的对称点为x=kπ+(π/2)(k∈Z)
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。