问题: 高中竞赛不等式
已知n∈N, 且n≥2。求证
1/(n+1)+1/(n+2)+…+1/(n+n)>13/24.
解答:
已知n∈N, 且n≥2。求证
1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
用数学归纳法证明
当n=2时,左边=(1/3)+(1/4)=7/12=14/24
14/24>13/24
所以,n=2时不等式成立
假设当n=k(k>2)时不等式也成立,则:
1/(k+1)+1/(k+2)+……+1/(k+k)>13/24
令左边=A
那么,当n=k+1时:
左边=1/(k+1+1)+1/(k+1+2)+……+1/(k+1+k-1)+1/(k+1+k)+1/(k+1+k+1)=1/(k+2)+1/(k+3)+……+1/(k+k)+1/(2k+1)+1/(2k+2)
=A-1/(k+1)+1/(2k+1)+1/(2k+2)
=A+1/(2k+1)-1/(2k+2)
=A+[1/(2k+1)(2k+2)]
>A>13/24
所以,当n=k+1时不等式也成立
综上:原不等式成立
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。