首页 > 留学知识库

问题: 高中竞赛不等式

已知n∈N, 且n≥2。求证
1/(n+1)+1/(n+2)+…+1/(n+n)>13/24.

解答:

已知n∈N, 且n≥2。求证
1/(n+1)+1/(n+2)+…+1/(n+n)>13/24

用数学归纳法证明
当n=2时,左边=(1/3)+(1/4)=7/12=14/24
14/24>13/24
所以,n=2时不等式成立
假设当n=k(k>2)时不等式也成立,则:
1/(k+1)+1/(k+2)+……+1/(k+k)>13/24
令左边=A
那么,当n=k+1时:
左边=1/(k+1+1)+1/(k+1+2)+……+1/(k+1+k-1)+1/(k+1+k)+1/(k+1+k+1)=1/(k+2)+1/(k+3)+……+1/(k+k)+1/(2k+1)+1/(2k+2)
=A-1/(k+1)+1/(2k+1)+1/(2k+2)
=A+1/(2k+1)-1/(2k+2)
=A+[1/(2k+1)(2k+2)]
>A>13/24
所以,当n=k+1时不等式也成立
综上:原不等式成立