问题: 初二数学题
如图,在正方形ABCD内有一点P,且∠PAD=∠PDA=15°,求证:△PBC是等边三角形。
解答:
已知:P是正方形ABCD内点,∠PAD=∠PDA=15°.
求证:△PBC是正三角形.
证法(一)
作CE⊥PD,垂足为E,显然∠DCE=15°.
作∠CDF=15°,DF交CE于F.则∠FDP=60°.
易证 △APD≌△CFD,
∴DF=DP,故△FDP是正三角形.
∵EF⊥DP,∴EF平分DP,即EF是DP的中垂线,
故CP=CD.
同理 BP=BA.
因此BP=CP=BC,
从而△PBC是正三角形.
证法(二)
在正方形ABCD内,作正三角形BQC.连AQ,DQ.
则△ABQ,△DCQ均为顶角是30°的等腰三角形,
故∠BAQ=∠CDQ=75°,
于是∠QAD=∠QDA=15°.
∴AQ重合于AP,DQ重合于DP.
由于两直线相交只有一个交点,故Q与P重合.
因此△PBC是正三角形.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。