首页 > 留学知识库

问题: 高中不等式问题

设x,y,z为正数,且 yz+zx+xy=1,求证
1/x+1/y+1/z≥3(x+y+z)

解答:

证明 ∵yz+zx+xy=1,∴1/x+1/y+1/z≥3(x+y+z)
<===> 1/3≥xyz(x+y+z)
<==> (yz+zx+xy)^2≥3xyz(x+y+z)
<==> (yz)^2+(zx)^2+(xy)^2≥xyz(x+y+z)
<==> x^2*(y-z)^2+y^2*(z-x)^2+(z^2*(x-y)^2≥0.