问题: 初二几何问题
一直线和一弦相交,其交点和圆心的连线与直线如果垂直,那么该交点必然是直线被以弦的两个端点为切点的两切线所截部分的中点。
解答:
一直线和一弦相交,其交点和圆心的连线与直线如果垂直,那么该交点必然是直线被以弦的两个端点为切点的两切线所截部分的中点。
上述问题可改述为:
设BC是圆O的弦,AB,AC是圆O切线,F在AB上,E在AC的延长线上,EF与BC交于D,EF与圆O交P和Q,且OD⊥EF。求证:DE=DF.
证明 连OB,OC,OD,OE,OF.
易证 O,E,C,D四点共圆,O,B,F,D四点共圆。
所以∠OCD=∠OED,∠OBD=∠OFD。
又∠OCB=∠OBC,故∠OED=∠OFD。
因此三角形EOF是等腰三角形,即OE=OF.
而OD⊥EF,所以OD也是EF的中线.
从而得:DE=DF.证毕.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。