首页 > 留学知识库

问题: E,F是椭圆x2+y2-4

解答:

椭圆:x²/4+y²/2=1--->F(√2,0), L:x=2√2
(1) AE+AF=2a=4,AE²+AF²=EF²=8
  --->SΔAEF=(1/2)AE•AF=[(AE+AF)²-(AE²+AF²)]/4=2
(2) AE+AF=BE+BF=4--->AF+BF=(AE+AF)+(BE+BF)-AB=5
(3) 设P(2√2,y)--->tan∠PEM=y/(3√2),tan∠PFM=y/√2
--->tan∠EPF=tan(∠PFM-∠PEM)
      =(√2y/3)/(1+y²/6)
      =(2√2)/(6/y+y)≤(2√2)/(2√6)=√3/3
--->∠EPF≤30°