不妨设AC>=BC
过A,B作CP垂线,垂足为D,E,CP延长线交AB于M
S△PBC=S△PCA==>AD=BE
AD⊥PC,BE⊥PC==>AD∥BE
==>DM=EM,AM=BM==>CP在中线CM上
同理:AP,BP也在BC,AC边中线上
==>P为△ABC重心
==>PM=1/2PC
M为AB中点,∠ACB=90°==>AM=CM=3/2PC
PA^2+PB^2=(AD^2+PD^2)+(BE^2+PE^2)
=AD^2+(DM+PM)^2+AD^2+(EM-PM)^2
=2AD^2+2DM^2+2PM^2
=2(AD^2+DM^2)+2PM^2
=2AM^2+2PM^2
=2(3/2PC)^2+2(PC/2)^2
=9/2PC^2+1/2PC^2
=5PC^2
PA^2+PB^2=5PC^2
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。