首页 > 留学知识库

问题: 高一数学

设0<α<π,sinα +cosα =7/13,則(1-tanα )/(1+tanα)的值是多少

解答:

(sinα +cosα)² =1+sin2α =7/13
==>2sinαcosα=-120/169
所以sinα和cosα有一个小于0
0<α<π ==>cosα<0
===>π/2< α<π

(sinα-cosα)²
=1-2sinαcosαa
=289/169
sinα-cosα>0
===> sina-cosa=17/13
(1-tanα)/(1+tanα)
=[1-(sinα/cosα)]/[1+(sinα/cosα)]
=(cosα-sinα)/(cosα+sinα)
=(-17/13)/(7/13)
=-17/7