首页 > 留学知识库

问题: 极限问题

见图片,要详细过程谢谢!!!!

解答:

lim<x→π/2>cosx/(π-2x)
令x-(π/2)=t,则:x=t+(π/2)
且,当x→π/2时,t→0
则,原式=lim<t→0>cos[t+(π/2)]/[π-2*(t+π/2)]
=ling<t→0>-sint/[π-2t-π]
=lim<t→0>sint/2t
=lim<t→0>(sint/t)*(1/2)
已知lim<x→0>sinx/x=1
所以,原式=1/2

或者,直接解答也可以:
lim<x→π/2>cosx/(π-2x)(分子分母均→0,应用罗必塔法则)
=lim<x→π/2>(cosx)'/(π-2x)'
=lim<x→π/2>(-sinx)/(-2)
=lim<x→π/2>sinx/2
=1/2