问题: 三角问题
已知△ABC的三内角满足 B^2=A*C, A=2B.
求证 a/(a+b+c)=2sin(π/14).
解答:
证明 因为 B^2=A*C, A=2B, A+B+C=π.则解得
A=4π/7,B=2π/7, C=π/7.
a/(a+b+c)=sin(4π/7)/[sin(4π/7)+sin(2π/7)+sin(π/7)]
=sin(3π/7)/[2sin(3π/7)*cos(π/7)+sin(6π/7)]
=1/[2cos(π/7)+2cos(3π/7)]
=1/[4cos(π/7)*2cos(2π/7)]
=sin(π/7)/sin(4π/7)
=sin(6π/7)/sin(3π/7)
=2cos(3π/7)=2sin(π/14).
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。