问题: 一道竞赛题
设a,b,c∈R+,且bc+ca+ab=1.试证
√(a^3+a)+√(b^3+b)+√(c^3+c)≥2√(a+b+c)
解答:
设a,b,c∈R+,且bc+ca+ab=1.试证
√(a^3+a)+√(b^3+b)+√(c^3+c)≥2√(a+b+c) (1)
证明 所证不等式等价于
∑√[a(a+b)(a+c)]≥2√[∑a*∑bc]
两边平方得:
∑a(a+b)(a+c)+2∑(b+c)√[bc(a+b)(a+c)]≥4[∑a*∑bc (2)
注意到如下三个局部不等式:
(b+c)√[bc(a+b)(c+a)]≥(2a+b+c)bc; (3-1)
(c+a)√[ca(b+c)(a+b)]≥(2b+c+a)ca; (3-2)
(b+c)√[ab(c+a)(b+c)]≥(2c+a+b)ab; (3-3)
(3-1)两边平方化简得:
a(a+b+c)*(b-c)^2≥0
故欲证(2)式,只需证
∑a(a+b)(a+c)+2∑(2a+b+c)bc≥4[∑a*∑bc (4)
(4)<===>
∑a^3+3abc≥∑a^2*(b+c) (5)
(5)<====>
abc≥(b+c-a)(c+a-b)(a+b-c) (6)
(6)式是己知不等式.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。