首页 > 留学知识库

问题: 三角问题

设A,B,C∈(0,π/2].求证
cos(A-B)*cos(B-C)*cos(C-A)≥8cosA*cosB*cosC

解答:

设A,B,C∈(0,π/2].求证
cos(A-B)*cos(B-C)*cos(C-A)≥8cosA*cosB*cosC.
这道题是否有问题????

设A,B,C∈(0,π/2],且A+B+C=π.求证
cos(A-B)*cos(B-C)*cos(C-A)≥8cosA*cosB*cosC.


简证如下 ∵A,B,C∈(0,π/2],
∴sin2A≥0,sin2B≥0,sin2C≥0.
x=cos(B-C)/cosA=[sin(B+C)*cos(B-C)]/[sinA*cosA]
=(sin2B+sin2C)/sin2A.
同样可得:
y=cos(C-A)/cosB=(sin2C+sin2A)/sin2B;
z=cos(A-B)/cosC=(sin2A+sin2B)/sin2C.

显然可证:xyz≥8.