首页 > 留学知识库

问题: 求证恒等式

设a,b,c∈R,a+b+c=0.求证
[(a^5+b^5+c^5)/5]=[(a^3+b^3+c^3)/3]*[(a^2+b^2+c^2)/2]

解答:

证明 ∵a+b+c=0,∴a^3+b^3+c^3=3abc;-a=b+c;
a^2=b^2+c^2+2bc;
左边=[-(b+c)^5+b^5+c^5]/5
=-bc[b^3+c^3+bc(b+c)]
=-bc(b+c)*(b^2+bc+c^2)
=abc(b^2+bc+c^2).
右边=abc(a^2+b^2+c^2)/2
=abc[(b+c)^2+b^2+c^2]/2
=abc(b^2+bc+c^2).